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Correlations and the Dirac structure of the nucleon self-energy
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Abstract. The Dirac structure of the nucleon self-energy in symmetric nuclear matter as well as neutron
matter is derived from a realistic meson exchange model for the nucleon-nucleon (NN) interaction. It is
demonstrated that the effects of correlations on the effective NN interaction in the nuclear medium can be
parameterized by means of an effective meson exchange. This analysis leads to a very intuitive interpretation
of correlation effects and also provides an efficient parametrization of an effective interaction to be used in
relativistic structure calculations for finite nuclei.

PACS. 21.30.Fe Forces in hadronic systems and effective interactions – 21.65.+f Nuclear matter

1 Introduction

Microscopic studies on the bulk properties of nuclear sys-
tems have shown that two ingredients may be needed to
derive nuclear properties from realistic nucleon-nucleon in-
teractions: the consideration of correlations beyond the
mean-field approach and the relativistic structure of the
nucleon self-energy in the nuclear medium. In fact, it is
known for many years that attempts to use realistic NN
interactions, i.e. models for the NN interaction which have
been fitted to the NN scattering phase shifts, in a sim-
ple mean field or Hartree-Fock calculation lead to nu-
clear systems which are unbound (see, e.g., the recent
review [1]). Therefore, various techniques have been de-
veloped to account for correlations beyond the mean-field
approach including the Brueckner hole-line expansion [2,
3], the coupled-cluster or “exponential S” approach [4,5],
the self-consistent evaluation of Green’s functions [6], vari-
ational approaches using correlated basis functions [7,8]
and recent developments employing quantum Monte Carlo
techniques [9,10].

In the framework of the Brueckner theory the effects of
two-nucleon correlations are taken into account by evalu-
ating an effective interaction, the so-called G-matrix. This
G-matrix corresponds to the T -matrix of NN scattering,
however, in the nuclear medium accounting for Pauli and
dispersion effects. It is obtained by solving the Bethe-
Goldstone equation or in the case of relativistic meson ex-
change models for the NN interaction by solving an equa-
tion which corresponds to a three-dimensional reduction of
the Bethe-Salpeter equation like the Blankenbecler-Sugar
or the Thompson equation [11]. In the Brueckner-Hartree-
Fock (BHF) approximation the nucleon self-energy or
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single-particle potential is then evaluated in terms of this
G-matrix.

Accounting for the two-nucleon correlations in this way
or by means of other many-body approaches, one obtains
results for the saturation property of nuclear matter or the
binding energy and radius of finite nuclei [1], which are
quite reasonable. All such results, however, form the so-
called Coester band [12], i.e. they either predict a binding
energy which is too small or a saturation density which is
too large (a too small radius in case of finite nuclei) as com-
pared to the empirical values. Extensive studies have been
performed to account for three-nucleon correlations [13].
One finds, however, that the inclusion of three-nucleon
correlations yields a small effect only, the phenomenon of
the Coester band persists for studies within the framework
of Brueckner theory as well as within other approaches to
solve the many-body problem.

It has been suggested to consider three-nucleon forces,
which are adjusted to produce the empirical saturation
point of nuclear matter [14]. Another possibility to shift
the calculated saturation point away from the Coester
band towards the empirical value is to account for rela-
tivistic effects. These studies have been motivated by the
phenomenology of the Walecka model [15]. The NN inter-
action in this model is described in terms of the exchange
of a scalar meson, σ, and a vector meson ω. Calculating
the nucleon self-energy, Σ, from such a meson exchange
model within a Hartree approximation, one finds that the
ω exchange yields a component Σ0, which transforms un-
der a Lorentz transformation like the time-like compo-
nent of a vector, while the scalar meson exchange yields
a contribution Σs, which transforms like a scalar. Insert-
ing this self-energy into the Dirac equation for a nucleon
in the medium of nuclear matter leads to single-particle



16 The European Physical Journal A

energies, which are as small as the empirical value of
−50 MeV. This small binding effect, however, results from
a strong cancellation between the repulsive Σ0 and the at-
tractive Σs component. The attractive scalar component
Σs leads to Dirac spinors for the nucleons in the nuclear
medium, which contain a small component significantly
enhanced as compared to the Dirac spinor of a free nu-
cleon. This effect is often described in terms of an effective
Dirac mass M∗ for the nucleon, which can be of the order
of 600 MeV in nuclear matter around saturation density.
This implies that the Dirac spinors for the nucleons in
the nuclear medium are quite different from those in the
vacuum. Since these Dirac spinors are used to evaluate
the matrix elements for the meson exchange model of the
NN interaction, this leads to a medium dependence of this
interaction, an effect which influences the calculated sat-
uration property.

Also realistic models for the NN interaction contain
large contributions from the exchange of scalar and vec-
tor mesons. For such meson exchange potentials V , one
can determine the Dirac structure of the nucleon self-
energy using the Hartree or Hartree-Fock approximation
in a straightforward way. As we have discussed above, us-
ing such realistic NN interactions, one has to account for
correlations beyond the Hartree-Fock approximation and
determine the self-energy in terms of the G-matrix rather
than the bare interaction V , i.e. perform what is called
a Dirac-Brueckner-Hartree-Fock (DBHF) or a relativistic
BHF calculation [16–20]. Since, however, this G-matrix is
obtained as a solution from a non-relativistic reduction of
the scattering equation, it provides matrix elements only
between single-particle states and does not keep track of
the relativistic structure of the effective interaction.

Various approximation schemes have been developed
to determine the Dirac structure of the self-energy Σ
or the structure of the nucleon Dirac spinors within the
context of the DBHF approach. A rather simple scheme
has been suggested by Brockmann and Machleidt [17].
They determine the momentum dependence of the single-
particle energy. Identifying this single-particle spectrum
with a corresponding spectrum derived within the Dirac-
Hartree approximation one can extract the effective Dirac
mass M∗. The underlying assumption is that the nucleon
self-energy is dominated by the scalar, Σs, and time-like
vector component, Σ0, which are constants independent of
the momentum of the nucleon. This approximation seems
to work reasonably well for symmetric nuclear matter but
it fails in the case of neutron matter [21]. Therefore, cal-
culations of the equation of state for asymmetric nuclear
matter, which are based on this approach [22,23], should
be considered with some caution.

Another scheme, the so-called projection method,
analyses the antisymmetrized matrix elements of G in
terms of sets of operators, which are invariant under
Lorentz transformation. If the relativistic structure of the
effective interaction G is defined in this way, one can de-
rive the Dirac structure of the self-energy and determine
the density dependence of the nucleon spinors [24,25]. As
will be discussed more in detail below, the result of this

analysis depends on the choice of relativistic invariants.
As an example, we mention the well-known feature that
the one-pion exchange contribution yields identical ma-
trix elements for the positive-energy Dirac spinors using
pseudo-scalar or pseudo-vector coupling, the Fock contri-
butions to the scalar part of the self-energy, however, are
quite different [15,26,27]. As another example, we will dis-
cuss the ρ exchange below.

In order to minimise these uncertainties of the projec-
tion method, we suggest to split the G-matrix into the
Born contribution, the bare interaction V , and the correc-
tions due to the correlations. While the Dirac structure of
V is well defined one may employ the projection method
for the correction term only. It turns out that these correc-
tions can be described rather well in terms of the exchange
of a few effective mesons with high masses, reflecting the
short range of the NN correlation effects, and coupling
constants depending on the nuclear density. The results
of this analysis provides some insight into the effects of
NN correlations. This analysis is similar to previous at-
tempts by Boersma and Malfliet [25] and Elsenhans et
al. [28]. Because of its simple structure, however, it might
be more appropriate to be used in DBHF studies on finite
nuclei [29,30].

After this introduction a brief description of the main
ingredients of the projection technique will be presented in
sect. 2. Results of the analysis for the effective NN inter-
action in symmetric nuclear matter and neutron matter
derived from various models of the Bonn potential [11].
After a detailed discussion of the results in sect. 3, the
main conclusions will be summarised in sect. 4.

2 Relativistic structure of the G-matrix

The Dirac equation for a nucleon with momentum k in a
medium of nuclear matter can be written

(� k −M −Σ(k))u(k, s) = 0 , (1)

with the self-energy Σ(k) accounting for the mean field
generated by the nuclear medium. By the requirement of
translational and rotational invariance, parity conserva-
tion and time reversal invariance, the general form of the
Dirac structure of the self-energy is given in the nuclear
matter rest frame as 4 × 4-matrix by

Σ(k) = Σs(k) − γ0Σ0(k) + γ · kΣv(k) , (2)

where Σs, Σ0, Σv are functions, depending for on-shell nu-
cleons (k0 = E(k)) only on the absolute value of the three-
momentum k ≡ |k| and the Fermi momentum kF, which
is related to the density via ρ = δ/(3π2)k3

F, where the
isospin degeneracy yields δ = 2 for nuclear matter and
δ = 1 for neutron matter. The density dependence will be
suppressed throughout this section.
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The components of the self-energy are easily deter-
mined by taking traces of the form

Σs(k) =
1
4
Tr[Σ(k)] ,

Σ0(k) = −1
4
Tr[γ0Σ(k)] ,

Σv(k) = −1
4
Tr[γ · k̂Σ(k)] . (3)

Introducing the effective quantities

M∗(k) =
M + Σs(k)
1 + Σv(k)

,

E∗(k) =
E + Σ0(k)
1 + Σv(k)

, (4)

the Dirac equation can be rewritten in compact form set-
ting k∗ = k

(� k∗ −M∗)u(k, s) = 0 , (5)

which is formal identical to the Dirac equation in the
vacuum case. Therefore, the positive-energy solution to
eq. (5) is given as

u(k, s) =

√
E∗(k) + M∗(k)

2M∗(k)

(
1

σ·k
(E∗(k)+M∗(k))

)
χs (6)

with the covariant normalisation

uu = 1 , u+u = E∗(k)
M∗(k) (7)

and the in medium on-shell relation

E∗2(k) = M∗2(k) + k2 . (8)

The self-energy itself is connected to the two-particle
effective interaction in the medium, the G-matrix, through
the Hartree-Fock relation

Σαβ(k) = −i

∫
q≤kF

d4q

(2π)4
g̃τσ(q) {G(k, q; k, q)ασ;βτ

−G(k, q; q, k)ασ;τβ} =

−i

∫
q≤kF

d4q

(2π)4
g̃τσ(q)GA(k, q; k, q)ασ;βτ =

−i

∫
q≤kF

d4q

(2π)4
Tr[g̃(q)GA(k, q; k, q)]αβ (9)

with the propagator for real nucleons propagating on-shell
inside the Fermi sea in the nuclear matter rest frame

g̃τσ(q)=
iπ

E∗(q)
(� q∗+M∗)τσδ(q0−E(q))Θ(kF−|q|). (10)

The equation above (9) must be understood as an op-
erator equation. Therefore, also the G-matrix is needed in
terms of Dirac operators as will be discussed now.

One of the main ingredients of the DBHF approach is
the derivation of the effective interaction G in the medium

from a realistic nucleon-nucleon interaction V . This is
achieved by solving the relativistic Bethe-Goldstone equa-
tion, a kind of Thomson equation for the scattering of two
nucleons in nuclear matter

G(q′,q|P, ω) = V (q′,q)

+
∫

d3k

(2π)3
V (q′,k)

M∗2

E∗2
P+k

Q(k,P)
ω − 2E∗

P+k

G(k,q|P, ω) (11)

with the starting energy

ω = 2E∗
P+q , (12)

where P = 1
2 (p1 + p2) denotes the center-of-mass mo-

mentum and q = 1
2 (p1 − p2) is the relative momentum

of the initial state, k and q′ are the relative momenta of
the intermediate and final states of two interacting nucle-
ons. The accessible intermediate states are restricted by
the Pauli operator Q to momenta above the Fermi mo-
mentum kF. To shorten the notation isospin indices will
be suppressed throughout this section.

To account for the spin, the 〈λ′
1λ

′
2|G(q′,q)|λ1λ2〉 G-

matrix is conveniently obtained in a basis of helicity states,
where λ′

1, λ
′
2 and λ1, λ2 are the helicities of the final and

initial state of particle 1 and 2. Demanding parity conser-
vation, time reversal invariance and conservation of total
spin reduces the 16 possible helicity amplitudes to six in-
dependent amplitudes, which are normally chosen to be

G1 = 〈+ + |G(q′,q)| + +〉 , G2 = 〈+ + |G(q′,q)| − −〉 ,
G3 = 〈+ − |G(q′,q)| + −〉 , G4 = 〈+ − |G(q′,q)| − +〉 ,
G5 = 〈+ + |G(q′,q)| + −〉 , G6 = 〈+ − |G(q′,q)| + +〉 ,

(13)

where +, − denotes the helicity 1
2 and − 1

2 , respectively.
The explicit dependence on P and ω has been omitted.
The number of independent helicity matrix elements is
further reduced to five in the case of on-shell scattering,
|q′| = |q|, which implies

G5 = −G6 . (14)

In order to evaluate the nucleon self-energy eq. (9), the
operator structure of the G-matrix is needed for the on-
shell case in the nuclear matter rest frame; on the other
hand, the determination of the operator structure is most
easily done in the center-of-mass frame, where P = 0 and
the scattering angle ϑ between the relative momenta q′, q
is fixed at ϑ = 0. Therefore, only q ≡ |q| have to be consid-
ered in the following as argument. The operator structure
is then given by expanding the G-matrix in terms of five
independent Fermi covariants according to the five helicity
matrix elements of the G-matrix

〈λ′
1, λ

′
2|G(q)|λ1, λ2〉A =∑

i=s,v,t,a,ps

Γ i
D(q) 〈 |T̂ (1)

i T̂
(2)
i | 〉D − Γ i

X(q) 〈 |T̂ (1)
i T̂

(2)
i | 〉X =

∑
i=s,v,t,a,ps

Γ i
A(q) 〈λ′

1, λ
′
2,q|T̂ (1)

i T̂
(2)
i | q, λ1, λ2〉D (15)
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Fig. 1. Contribution of the π exchange to the scalar (Σs) and
vector component (Σ0) of the nucleon self-energy in nuclear
matter with kF = 1.36 fm−1. Results derived from the projec-
tion method (pseudo-scalar coupling) are displayed in the left
part of the figure, while those derived from the original Bonn
interaction (pseudo-vector coupling) are given in the right part.
Note the different scales in the two parts of the figure.

with the Fermi covariants

T̂i ∈ {1, γµ, σµν , γ5γµ, γ5} (16)

and the Lorentz invariant amplitudes

Γ i
A(q) = Γ i

D(q) −
5∑

k=1

FkiΓ
k
X(q) , (17)

where the Fki is the well-known Fierz transformation

(F )ki =
1
4




1 −1 − 1
2 1 −1

−4 −2 0 −2 −4
−12 0 −2 0 12

4 −2 0 −2 4
−1 −1 1

2 1 1


 . (18)

The subscript A in eq. (15) indicates that only an-
tisymmetrized matrix elements are obtained as solution
of the Bethe-Goldstone equation and therefore only those
can be analysed. Here, the explicit splitting of the anti-
symmetrized matrix element in its direct and exchange
part (labelled with the subscripts D and X) only illus-
trates, that, using the local Fermi covariants eq. (16), both
parts can be rewritten with the help of the Fierz trans-
formation in terms of the antisymmetrized amplitudes Γ i

A
and the direct matrix element of the Fermi covariants.
Nevertheless, the direct and exchange part cannot be de-
termined from the antisymmetrized matrix elements and
it is not required to evaluate the self-energy.

Inverting eq. (15) yields the antisymmetrized ampli-
tudes Γ i

A, where only the scalar Γ s
A and vector Γ v

A ampli-
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Fig. 2. Contribution of the η exchange to the scalar and
vector component of the nucleon self-energy in nuclear matter.
For further details, see fig. 1.
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Fig. 3. Contribution of the ρ exchange to the scalar and
vector component of the nucleon self-energy in nuclear matter.
For further details, see fig. 1.

tudes are needed to evaluate the self-energy using eq. (9):

Σs(k1) = − 1
2π2

∫ kF

0

d3k2
M∗

E∗ Γ s
A(q) ,

Σ0(k1) = − 1
2π2

∫ kF

0

d3k2 Γ v
A(q) ,

Σv(k1) = − 1
2π2

∫ kF

0

d3k2
k2

∗

E∗ Γ v
A(q) . (19)

Here, k1 and k2 are the single particle momenta in the
nuclear matter rest frame. The relative momentum q, de-
fined in the c.m. frame, is related with k1 and k2 via q =
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Fig. 4. The scalar (Σs, left part) and time-like vector com-
ponent (Σ0, right part) of the nucleon self-energy in nuclear
matter at kF = 1.36 fm−1. Results obtained for the bare NN
interaction V (Bonn B potential of [11], dashed lines) are com-
pared to those derived from the G-matrix (solid lines).

√
s/4 −M∗2, where s = (E∗(k1) +E∗(k2))2 − (k1 + k2)2

is the invariant mass. This transformation between the
nuclear matter rest frame and the center-of-mass frame is
described in detail in [24].

The used set of Fermi covariants is sufficient to repro-
duce the matrix elements of the effective interaction G for
the positive-energy solutions of the Dirac equations. From
the resulting amplitudes Γ s

A(q) and Γ v
A(q) one can imme-

diately determine the components of the self-energy ac-
cording to (19). Nevertheless, this procedure is not unique
and depends on the chosen set of operators T̂ . A well-
known example which illustrates this dependence is the
pion exchange part of the NN interaction, which either is
described by a pseudo-scalar or a pseudo-vector coupling.
Both couplings yield for on-shell nucleons the same matrix
elements, if the coupling constants fpv and gps obey the
relation fpv/mπ = gps/(2M), where mπ is the pion mass
and M the mass of the nucleon. Nevertheless, the compo-
nents of the self-energy are completely different for both
couplings. A more detailed discussion of this and other
examples will be given in the next section.

To circumvent the aforementioned problem, which al-
ready occurs in the case if the effective interaction G is
replaced with the bare nucleon-nucleon interaction V , the
G-matrix is split into two parts

G = V + �G . (20)

The decomposition eq. (15) is applied only to the residual
part �G since the explicit Dirac structure of V and the
way to evaluate the components of the self-energy from V
is known explicitly.
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Fig. 5. Antisymmetrized interaction amplitudes Γ i
A, derived

from the analysis of ∆G presented as a function of the relative
momentum of the interacting nucleons in their center-of-mass
frame.

3 Results and discussion

In the first part of this section we would like to show some
ambiguities of the projection method which is related to
the choice of the covariant operators in (16). For that pur-
pose, we consider various components of the bare NN in-
teraction V using as an example the OBE potential Bonn
B as defined in table A.2 of [11]. If one considers only the
π exchange contribution and analyses the matrix elements
of Vπ by means of the projection formalism discussed in
sect. 2, one obtains large components for Lorentz invari-
ant scalar and vector amplitudes Γ s

A and Γ v
A which are due

to the Fock-exchange terms of the pseudo-scalar operator
representing the π exchange in the projection formalism.
Integrating these amplitudes as indicated in (19) leads to
large scalar (Σs) and time-like vector components (Σ0).

This is visualised in the left part of fig. 1, where these
components calculated for symmetric nuclear matter at
the empirical saturation density (Fermi momentum kF =
1.36 fm−1) are presented as a function of the nucleon
momentum k1. Note that this analysis yields an abso-
lute value for the scalar component which gets as large
as 600 MeV, which implies that the effective Dirac mass
M∗ of the nucleon in the nuclear medium would become as
small as 340 MeV. Furthermore, this analysis yields quite
a strong momentum dependence of the scalar and vector
components of the self-energy Σ. Because of the strong
cancellation between the scalar and vector components,
the total effect of the π exchange on the single-particle
energy

ε(k) =
√

M∗2(k) + k2 −Σ0(k) −M (21)

is rather small.
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quantities of the order 1.

Calculating the self-energy directly from the π ex-
change part in the Bonn B potential leads to quite differ-
ent results as one can see from the right-hand side of fig. 1.
In this case, the scalar part of the self-energy has the oppo-
site sign, it is small (of the order of 15 MeV) and exhibits
a very weak momentum dependence. The single-particle
energy for the nucleons in nuclear matter, calculated ac-
cording to (21), is identical to the one derived from the
projection method, the Dirac structure of the self-energy,
however, is completely different. The reason for this differ-
ence is well known: The matrix elements of the π exchange
potential, calculated for the positive-energy solution of
the Dirac equation for the nucleon, are independent of
assuming either pseudo-scalar or pseudo-vector coupling
for the πN vertex. The coupling between the positive-
and negative-energy spinors, however, is quite different.
The projection method analyses the matrix elements of
the positive-energy solutions in term of a pseudo-scalar
operator, leading to large components of the self-energy.
Assuming a pseudo-vector coupling for the pion, as it is
done in the original NN interaction, V yields much smaller
components in the self-energy. This feature is known for
a long time (see, e.g., [15]). It is the origin of the strong
momentum dependence of the self-energy observed in [26],
where the projection method has been applied. The prob-
lem might be cured by analysing the interaction in terms
of the pseudo-scalar operator, transforming the pseudo-
scalar component into a corresponding pseudo-vector term

and evaluate the self-energy with this pseudo-vector part
(see, e.g., [25,27]).

Such ambiguities of the projection method, however,
not only arise for the π exchange part. Another example is
of course the exchange of the pseudo-scalar–isoscalar me-
son, the η-meson. Because of its weaker coupling constant
and its higher mass, it does not play such a significant role
as the π exchange. Nevertheless, also in this case the dif-
ferences between the self-energy components derived via
the projection method and from the direct evaluation are
non-negligible as one can see from fig. 2.

The ρ exchange contribution to V is considered as
a last example for such a comparison between the self-
energies calculated via the projection method and the di-
rect evaluation of the meson exchange term. Results are
displayed in fig. 3. The original ρ exchange term of the
Bonn B potential contains a vector coupling but also a
strong tensor coupling (Pauli-coupling) term in the La-
grangian for the ρN interaction. Also these two different
coupling modes cannot be resolved by means of the projec-
tion method. The difference between the direct evaluation
of the self-energy and the use of the projection formalism
are remarkable also in this case.

Therefore, in order to minimise the ambiguities in the
projection method, we suggest to split the effective in-
teraction G according to eq. (20) into the bare inter-
action V and the correction term ∆G, representing the
corrections which are due to the correlations. The Dirac



E. Schiller and H. Müther: Correlations and the Dirac structure of the nucleon self-energy 21

1 1.5

kF [fm
-1

]

0.5

1

M
* /M

Nuclear Matter
Bonn A

Fig. 7. Effective mass M∗ characterising the Dirac spinor of
the nucleon in nuclear matter as a function of the Fermi mo-
mentum kF. The range of the momentum-dependent masses
derived from the projection method are indicated by the
shaded area, the result obtained from an analysis of the single-
particle spectrum is displayed by the solid line. The data have
been derived from the Bonn A potential.

1 1.5

kF  [fm
-1

]

-15

-10

-5

E
ne

rg
y 

/ n
uc

le
on

  [
M

eV
]

Nuclear Matter

Bonn A
Bonn B
Bonn C

Fig. 8. Calculated binding energy of nuclear matter as a
function of the Fermi momentum kF using the three different
versions of the Bonn potential.

1 1.5 2

kF [fm-1]

0.5

1

M
* /M

Neutron Matter
Bonn A

Fig. 9. Effective mass M∗ characterising the Dirac spinor of
the nucleon in neutron matter. For further details, see fig. 7.

structure of the bare interaction is directly known, and
the projection method has to be applied to the analysis of
∆G only. This scheme is advantageous also from another
point of view: One must keep in mind that the matrix el-
ements of V and G in the helicity basis are dominated by
the one-pion-exchange contribution. Note that the ratio of
coupling constant and mass of the meson, g2

α/m
2
α, which

is a measure for the importance of the various meson ex-
change contribution is about a factor 25 larger for α = π
than for the σ or ω-meson. Analysing ∆G this dominating
π exchange contribution, including the momentum depen-
dencies, which are related to the form-factors for the πN
vertex, are removed, which stabilises the numerical anal-
ysis significantly.

Results for the nucleon self-energy calculated again for
symmetric nuclear matter at a Fermi momentum kF =
1.36 fm−1 are displayed in fig. 4. The contribution of the
bare NN interaction V to the scalar and vector part of
the self-energy (see dashed lines in both parts of the fig-
ure) yields rather similar values ranging from −420 MeV
to −400 MeV for k1/kF between 0 and 1. This implies
that the single-particle energies tend to be positive and
one obtains no binding energy for nuclear matter. This
is in line with the non-relativistic studies mentioned in
the introduction: Using realistic NN interactions one does
not obtain any binding energy if correlations beyond the
Hartree-Fock approach are ignored.

Adding the contributions of ∆G to the various compo-
nents of the self-energy, one obtains the results displayed
by the solid lines in fig. 4. The correlation effects contained
in ∆G reduce the absolute value for the scalar as well as
the vector component of the self-energy. One could argue
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Fig. 10. Calculated binding energy of neutron matter as a
function of the density using the Bonn A potential. The results
derived from the projection method are compared to those de-
rived from the analysis of ε(k).
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Fig. 11. Contribution of ∆G to the energy of neutron matter
and the effective mass M∗, calculated at k = kF, as a function
of kF. The results of the direct calculation (solid lines) are com-
pared to the prediction of the parametrization of ∆G according
to eq. (22) assuming that this parametrization is independent
of the isospin asymmetry.

that the short-range correlations lead to a reduction of the
wave function at small relative distances. This quenching
of the relative wave function reduces the effects of the
σ exchange, which is the dominating contribution to Σs,
as well as the ω exchange, which is the driving term in
Σ0. Since the ω exchange is of shorter range than the
σ exchange, the mass of the ω-meson (mω = 783 MeV)
is larger than the one of the σ (mσ = 550 MeV), the
quenching of the short-range components in the relative
wave function is more important for the ω than for the σ
exchange. This explains that the absolute value of Σ0 is
reduced stronger by ∆G than the absolute value of Σs.
This difference on the effect of correlations on Σs and Σ0

leads to attractive single-particle energies and binding en-
ergy of nuclear matter.

It is worth noting that the inclusion of ∆G leads to a
constant shift in the components of the self-energy, which
is almost independent of the momentum of the nucleon.
This very weak momentum dependence of the ∆G effects
can also be seen in fig. 5, where the antisymmetrized am-
plitudes Γ i

A (see eq. (15)) are displayed. These amplitudes
are derived from the analysis of ∆G. Also these interaction
amplitudes are almost independent of the relative momen-
tum q. Deviations from the constant value are observed
only for q → kF, i.e. for momenta for which the energy
denominator in the Bethe-Goldstone equation approaches
the pole.

This observation suggests to parametrize the compo-
nent ∆G in terms of the exchange of effective mesons with
infinite mass. To put it in different words: The correla-
tion effects contained in ∆G are described in terms of an
effective interaction with zero range. If we focus the at-
tention on the scalar and vector interaction amplitudes
only, at each density, 4 coupling constants are required to
parametrize ∆G in the form

∆G=[gs,s1111+gv,sγ
µγµ]+[gs,v1111+gv,vγ

µγµ] τ ·τ . (22)

The results for these effective coupling constants are dis-
played in fig. 6.

The value of these coupling constants indicate that ∆G
is in general weaker than V but yields a non-negligible
correction to the bare interaction V . The parameters are
rather similar for the three versions of the Bonn potential
(Bonn A, B and C as defined in table A.2 of [11]). The
absolute values are typically larger for Bonn C than for
the other two reflecting the fact that this potential yields
slightly stronger correlation effects. The density depen-
dence of these parameters is weak but non-negligible. The
largest absolute values are observed for vector-isoscalar
pseudo meson (gv,s). This reflects the fact, which we men-
tioned already above, that correlations yield a suppression
of the ω-meson exchange in particular.

Results for the properties of symmetric nuclear mat-
ter are displayed in figs. 7 and 8. Figure 7 displays the
density dependence of the effective Dirac mass M∗(k) de-
fined in eq. (4). The shaded area at each Fermi momen-
tum kF indicates the range of values for M∗(k), which is
obtained at the corresponding density using the projec-
tion method. For a comparison, we also present the ef-
fective mass derived from the momentum dependence of
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the single-particle energy as proposed by Brockmann and
Machleidt [17]. The analysis of the single-particle energy,
which is much simpler than the projection scheme, yields
rather similar results for symmetric nuclear matter. There-
fore also the calculated binding energies, derived from the
projection scheme (see fig. 8), are very close to those ob-
tained in [17].

Significant differences between these two methods,
however, can be observed in the case of isospin asymmet-
ric matter, like, e.g., pure neutron matter. The effective
masses obtained from the single-particle spectrum are sig-
nificantly larger than the range of M∗(k), which are de-
rived at the same density from the projection method (see
fig. 9). This confirms the observation of Ulrych et al. [21]
who studied a parametrization of G published by Boersma
and Malfliet [25]. This demonstrates that the analysis of
the the single-particle energy is not a reliable tool to de-
termine the Dirac structure of the self-energy: accidentally
it works well for symmetric nuclear matter for the NN
interactions considered, it fails, however, for asymmetric
nuclear matter.

How does this affect the calculated binding energies?
As an example, results for the binding energy of pure neu-
tron matter calculated for the Bonn A potential are pre-
sented in fig. 10. The two methods yield almost identi-
cal results at low densities. At densities around 0.4 fm−3,
which corresponds 2.5 times the saturation density of nu-
clear matter, the evaluation based on the simple analysis
of ε(k) underestimates the energy by 10%.

Finally, we add a remark on the asymmetry depen-
dence of the parametrization of ∆G according to (22). If
one employs the density-dependent parameters for ∆G de-
rived in symmetric nuclear matter as displayed in fig. 6,
assuming that the parametrization of ∆G is independent
of the isospin asymmetry, also for pure neutron matter one
obtains effective masses (M∗ at k = kF) and contributions
of ∆G to the energy per nucleon in neutron matter as pre-
sented by the dashed lines in fig. 11. These results are very
close to the corresponding values derived from a direct de-
termination of ∆G in neutron matter. This indicates that
the underlying assumption, the parametrization of ∆G is
independent of the isospin asymmetry, is quite reasonable.
Therefore, one may use the parametrization of ∆G as dis-
played in fig. 6 for Dirac-Brueckner-Hartree-Fock studies
of finite nuclei with N = Z as well as N �= Z.

4 Conclusions

A method is presented which determines the Dirac struc-
ture of the Brueckner G-matrix from its matrix elements
between positive energy spinors only. The usual projection
method is model dependent as it depends on the choice of
the covariant operators. This model dependence is demon-
strated for various meson exchange terms. In order to min-
imise the model dependence of the projection method G
is split into the bare interaction V and the correction ∆G

reflecting the effects of NN correlations. Since the Dirac
structure of V is known, the projection methods is ap-
plied to the correction ∆G only. This analysis allows an
explicit study of the correlation effects on the Dirac struc-
ture of the nucleon self-energy. A simple parametrization
of ∆G and its density dependence is presented in terms
of the exchange of pseudo-mesons with infinite mass. This
parametrization could be useful for the study of finite nu-
clei. It is shown that the simple method, which determines
the Dirac structure of the self-energy from the momentum
dependence of the single-particle energy yields fairly good
results for symmetric nuclear matter but fails for asym-
metric matter.

This investigation has been supported by the SFB 382 of the
“Deutsche Forschungsgemeinschaft”.
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21. S. Ulrych, H. Müther, Phys. Rev. C 56, 1789 (1997).
22. L. Engvik, M. Hjorth-Jensen, E. Osnes, G. Bao, E.

Østgaard, Phys. Rev. Lett. 73, 2650 (1994).



24 The European Physical Journal A

23. L. Engvik, E. Osnes, M. Hjorth-Jensen, G. Bao, E.
Østgaard, Astrophys. J. 469, 794 (1996).

24. C.J. Horowitz, B.D. Serot, Nucl. Phys. A 464, 613 (1987).
25. H.F. Boersma, R. Malfliet, Phys. Rev. C 49, 233 (1994);

50, 1253(E) (1994).
26. L. Sehn, C. Fuchs, A. Faessler, Phys. Rev. C 56, 216

(1997).

27. T. Gross-Boelting, C. Fuchs, Amand Faessler, Nucl. Phys.
A 648, 105 (1999).
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